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Abstract

This Honours undergraduate research project aims to provide research experience
in ergodic theory. The student learned the Birkhoff Ergodic Theorem and its proof
by Professor Tserunyan Anush. One of the primary reading materials was a 2015
paper by Lewis Bowen and Amos Nevo on Amenable Equivalence Relations and the
Construction of Ergodic Averages for Group Actions. One of the main goals of the
course was to understand the method for constructing pointwise ergodic sequences
on countable groups. During the reading process, the student was introduced to
ergodic theory, orbit equivalence theory, and other areas of mathematics. This
report summarizes some of the concepts and topics that arose naturally.

1 Preliminary Definitions

• Definitions 1.1: Let (X,B, µ) be a standard probability space and let T : X → X
be a measurable transformation.T is called measure-preserving with respect to the
measure µ if µ(T−1(A)) = µ(A) for all A ∈ B.
Three classical examples of measure-preserving transformations include the Baker’s
map, the shift map, and the Gauss map.

• Definitions 1.2

1. A set D ⊆ B is T -invariant if T−1(D) = D.

2. A function f : X → R is called T -invariant if f = f ◦ T . Equivalently, f−1(A)
is T -invariant for each A ∈ R.

• Definition 1.3 Let T be a measure-preserving transformation (p.m.p) on a proba-
bility space (X,µ). The map T : X → X is known as ergodic if for every T -invariant
measurable set A, µ(A) = 0 or 1.
Theorem 1.1 Let (X,B, µ) be a probability space and T measure preserving.
TFAE:

(i) T is ergodic.

(ii) If B ∈ B with µ(T−1(B)∆B) = 0, then µ(B) = {0, 1}.
(iii) If A ∈ B with µ(A) > 0, then µ (

⋃∞
n=1 T

−n(A)) = 1.
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(iv) If A,B ∈ B with µ(A) > 0 and µ(B) > 0, then there exists n > 0 such that
µ(T−n(A) ∩B) > 0.

The proof for the theorem is omitted.

Note: Examples of ergodic transformations include irrational rotations and the
baker’s map.

• Definition 1.4 The action of a countable group Γ on X is free if for all x ∈ X,
Γx = {e}, i.e., the only stabilizer of x is the identity in Γ. Equivalently, γx ̸= x
whenever γ ̸= 1.

2 Learning Outcome

2.1 Wondering Sets and Poincaré’s Recurrence Theorem

Here we present the proof of the Poincaré recurrence theorem via wondering sets contra-
diction argument.

Definitions: Let (X,µ) be a standard probability space and let T : X → X be a
measurable p.m.p. transformation.

1. A wandering set is a set W ⊆ X such that the sets T n(W ) are pairwise disjoint
(more formally, µ(T n(W ) ∩ Tm(W )) = 0 for all disjoint n,m ∈ Z).

2. The Poincaré Recurrence Theorem states that for any measurable A ⊆ X
with positive measure, almost every x ∈ A returns to A after some iteration of T
(i.e., for almost every x ∈ A, there exists n > 0 such that T n(x) ∈ A).

Proof: We may prove the Poincaré Recurrence Theorem using the wandering set and
via a contradiction argument. To start, we construct a wandering set F that consists of
points of A which are not A-recurrent:

F = {x ∈ A | T n(x) /∈ A for all n ≥ 1}.

Now suppose µ(F ) > 0. Then observe that F is a wandering set (since T−n(F ) ∩
T−m(F ) = ∅ for all n ̸= m). Then we have:

1 = µ(X) ≥ µ

(
∞⋃
n=0

T−n(F )

)
=

∞∑
n=0

µ(T−n(F )) =
∞∑
n=0

µ(F ) = ∞,

which is a contradiction. Thus we have shown that µ(F ) = 0 and therefore almost every
x of A is A-recurrent, and the Poincaré Recurrence Theorem holds.

2.2 Classical Birkhoff Ergodic Theorem

An important part of the research project was the introduction to Professor Tserunyan
Anush’s proof of the classical pointwise Birkhoff ergodic theorem via the method of tiling.
The outline of the proof is presented here.
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Theorem: A probability measure preserving transformation T : X → X is ergodic if
and only if for all f ∈ L1(X,µ), and for almost every x ∈ X,

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
X

f dµ.

Proof: (⇒)
We can prove this theorem using the Local-Global Bridge lemma and the tiling argument.
The Local-Global Bridge lemma states that for all n ∈ N,∫

X

f dµ =

∫
X

1

n

n−1∑
i=0

f(T i(x)) dµ.

From now on, we shall define Anf(x) =
1
n

∑n−1
i=0 f(T

i(x)). Intuitively, Anf(x) is the av-
erage of f(x) over x, T (x), T 2(x), . . . , T n−1(x).

Note that since T is a probability measure preserving map, for all measurable subsets
B ⊆ X, ∫

X

1B(x) dµ =

∫
X

1B(T (x)) dµ,

where 1A(x) is the indicator function for the set A.

This holds as a result of the change of variable formula. Furthermore, since T is proba-
bility measure preserving, for all f ∈ L1(X,µ),∫

X

f dµ =

∫
X

f ◦ T dµ.

∫
X

f ◦ T dµ =

∫
X

n∑
i=1

ai1Ai
(T (x)) dµ =

n∑
i=1

aiµ(T
−1(Ai)) =

n∑
i=1

aiµ(Ai) =

∫
X

f dµ.

If
∫
X
f dµ =

∫
X
f ◦T dµ, then by induction,

∫
X
f dµ =

∫
X
f ◦T n dµ for any n ∈ N. Then,∫

X

f dµ =
1

n

∫
X

n−1∑
i=0

f ◦ T i dµ.

Thus we have proven the Local-Global Bridge lemma.

Now observe that lim supn→∞Anf and lim infn→∞Anf are both T -invariant. Note that

An+1f(x) =
1

n+ 1
f(x) +

n

n+ 1
Anf(T (x))

and
lim sup
n→∞

Anf(T (x)) = lim sup
n→∞

An+1f(x) = lim sup
n→∞

Anf(x).

The T -invariance of lim infn→∞Anf(x) is shown similarly.

One of the key characterizations of ergodicity is that if the probability measure preserving
transformation T is ergodic and f is a T -invariant function, then f(x) is constant almost
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everywhere (i.e., f(x) = c a.e.).

Combining the above results, we obtain that lim supn→∞Anf and lim infn→∞Anf are
constant a.e. Let us assume for simplicity and without loss of generality that f is bounded
and

∫
X
f dµ = 0.

To prove the theorem, we want to show that lim supn→∞Anf = lim infn→∞Anf =
limn→∞Anf = 0. Suppose that lim supn→∞Anf = c and c is a positive constant. Define
∆ = c

2
and ϵ = min

(
c
16
, 1
8

)
. We can construct a set Z which consists of points x ∈ X

where the average over the first L steps (for some large L) is all smaller than c
2
. Formally,

Z = {x ∈ X | Anf(x) <
c

2
for all n ∈ [1, L]}.

Note that L is large enough that ∥1Z∥ + ∥f ◦ 1Z∥1 < ϵ. (i.e., the set Z is small enough
such that the set Z supports less than ϵ of the total weight of 1 and f). Now we will
define tiling. For all x ∈ X, define ℓ(x) := the smallest integer n ≤ L such that the
average of f from x to T n(x) is greater than ∆. Formally,

1

ℓ(x)

ℓ(x)−1∑
i=0

f(T i(x)) > ∆,

and if no such n exists, then ℓ(x) = 1.

Let Ix = [x, T ℓ(x)(x))T be called a tile and A T -interval I = [y, z) is tiled if there is a
partition into T -intervals in the form of Ix for x. Observe that such a partition is natu-
rally unique because Ix necessarily would be the tile containing x.

Now we can introduce a corollary to help us proceed with the proof.

Corollary: Let T be an ergodic, measure-preserving transformation on a probability
space (X,µ). For an arbitrary positive integer L, there exists a Borel set S with arbitrarily
small measure such that:

1. The set S does not overlap with any of its first L images under the transformation
T . (i.e., S is disjoint from the sets T (S), T 2(S), . . . , TL(S)).

2. The set S intersects almost every orbit of the transformation T in an infinite number
of points in both directions.

The proof of the corollory uses Luzin–Novikov uniformization theorem and is omitted
here.
By the measure-preserving nature of the transformation T , the set S can be made arbi-
trarily small, and the union

⋃L
i=1 T

−i(S) supports less than ϵ of the total mass of 1 and
the function f . Define s(x) to be the closest element of S to the left of x. Define a partial
finite equivalence relation F on X by x ∼F y if and only if there exists z /∈

⋃L
i=1 T

−i(S)
such that x, y ∈ Iz and [s(z), z) is tiled.

If we let Y be the domain of the partial finite equivalence relation F on X, then we have∫
Y c

dµ+

∫
Y c

|f | dµ < 2ϵ.
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Then

0 =

∫
X

f dµ ≥
∫
Y

f dµ− 2ϵ =

∫
Y

AN(f) dµ− 2ϵ >
δ

2
̸= 0.

Thus, we have our contradiction, and the proof is complete.

(⇐) In this direction, we want to show that for any T -invariant measurable set A,
µ(A) = 0 or 1. Define the function f(x) = 1A(x). Since A is a T -invariant set, for any
i ≥ 0, we have

f(T i(x)) = 1A(T
i(x)) = 1A(x) = f(x).

Then,

1

n

n−1∑
i=0

f(T i(x)) =
1

n

n−1∑
i=0

1A(x) = 1A(x).

By assumption, this equals
∫
f dµ =

∫
1A dµ = µ(A). Thus, for almost every x ∈ X,

1A(x) = µ(A). Therefore, µ(A) ∈ {0, 1}, and we have proven that T is an ergodic
transformation.

2.3 Amenable Groups

Consider (X,µ) where µ is a finitely additive probability measure on X. µ is called left-
invariant if ∀γ ∈ Γ, for all sets A ⊆ Γ, we have µ(γ ∗ A) = µ(A).

Famously known as the Tarski theorem, it states that Γ is not amenable if and only
if Γ is paradoxical (i.e., there exist disjoint sets A,B ⊆ Γ such that there are partitions
A1, . . . , An of A, B1, . . . , Bn of B, and γ1, . . . , γn ∈ Γ such that

Γ =
n⋃

i=1

γiAi =
n⋃

j=1

γjBj.

Proposition: F2 is paradoxical.

Proof: Suppose a, b are the generators of F2. Thus, every element of F2 begins with
{a, b, a−1, b−1}. Define U(x) to be the set of reduced words that begins with x. Clearly,
F2

∼= U(a)∪U(a−1) ∼= U(b)∪U(b−1). Thus, we have demonstrated that F2 is paradoxical.

Definitions:

1. A countable group Γ is called an amenable group if it admits a left invariant finitely
additive probability measure.

2. A countable group Γ satisfies the Reiter condition if ∀ϵ > 0, ∀γ1, . . . , γn ∈ Γ, there
exists f ∈ ℓ1(Γ) such that f ≥ 0, ∥f∥1 = 1, and ∀1 ≤ i ≤ n, ∥f − γif∥1 < ϵ.

3. Γ (the same group as above) satisfies the Følner condition if ∀ϵ > 0, ∀γ1, . . . , γn ∈ Γ,
there exists F ⊆ Γ, with F finite, such that ∀1 ≤ i ≤ n,

|γiF∆F |
|F |

< ϵ.
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A Følner sequence is a sequence {Fn} of nonempty subsets of Γ such that limn→∞
|γFn∆Fn|

|Fn| =
0 for all γ ∈ Γ. If a group Γ satisfies the Følner condition, then it admits a Følner
sequence.

4. A mean on Γ is a linear functional (a linear map from a vector space to its field of
scalars) m : ℓ∞(Γ) → C (the complex numbers) such that:

(a) If f ≥ 0, then m(f) ≥ 0.

(b) m(1) = 1, where 1 denotes the constant function with value 1.

A mean m is left-invariant if for all γ ∈ Γ, m(f ◦ γ−1) = m(f).

Proposition: Γ is an amenable group if and only if Γ admits a left invariant mean.

Theorem: Suppose Γ is a countable group, then the following are equivalent (TFAE):

1. Γ is an amenable group.

2. Γ satisfies the Reiter condition.

3. Γ satisfies the Følner condition.

Proof of (3) (⇒) (1): Here we will prove that if a group Γ satisfies the Følner condition,
then it will be an amenable group. Suppose we have an increasing sequence of subsets of
Γ and denote this sequence by {Ai}i∈N. Define {ϵi}i∈N to be a sequence of real numbers
converging to 0. By the assumption of the Følner condition, we can find a sequence
{Fn}n∈N such that

|γFn∆Fn|
|Fn|

< ϵ for all γ ∈ Γ and for any ϵ > 0.

Thus,
|γFn∆Fn| < |Fn| · ϵ for all γ ∈ Γ.

Define Prob(Γ) to be the space of all possible probability measures on Γ, or equivalently,

Prob(Γ) = {µ ∈ ℓ1(Γ) : µ ≥ 0 and
∑
γ∈Γ

µ(γ) = 1}.

Then, let µi =
1

|Fn|1Fn ∈ Prob(Γ). Observe then that

∥γµi − µi∥1 =
1

|Fi|
|γFi∆Fi|.

Let µ ∈ ℓ∞(Γ) and define µ := the limit point in the weak-topology of the sequence {µi}.
Then µ is an invariant mean and thus Γ is an amenable group.

2.4 Tempered Folner Sequence:

In Elon Lindenstrauss’s 2001 Pointwise Theorem for Amenable Groups, the author de-
fined a tempered Folner sequence as a sequence of sets {Fn}n∈N if there exists a
constant c > 0 such that for all n ∈ N, |

⋃n−1
k=1(Fk)

−1Fn| ≤ c|Fn|.

Here, F−1
k Fn represents the set of all elements g of G (where G is a compact group such as

the group of integers Z) that can be written as g = f−1
k fn for some fk ∈ Fk and fn ∈ Fn.
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2.5 Radon Nikodym Cocycles

In the paper by Lewis Bowen and Amos Nevo, Radon-Nikodym cocycles are frequently
used and we shall present our investigation into the topic.

Let Γ ↷ (X,µ) be a probability measure preserving transformation. A cocycle of this
action is a measurable function ω : Γ ×X → K defined by ω(st, x) = ω(s, tx)ω(t, x) for
all s, t ∈ Γ and a.e. x ∈ X.

Let E be a countable Borel equivalence relation on a standard probability space (X,µ).
E is measure class preserving if either of the following equivalence conditions holds:

1. The E-saturation of null sets is null, i.e., if Z ⊂ X is null, then [Z]E =
⋃

x∈Z [x]E =
{x ∈ X; there exists z ∈ Z such that zEx} is null.

2. For any/some Borel actions Γ ↷ X of a countable group Γ such that EΓ = E, the
action of Γ is measure class preserving, i.e., each γ ∈ Γ maps null sets to null sets.
Or equivalently, γ∗µ ∼ µ.

3. There exists a unique (up to a null set) Borel function w : E → (R+, ·), defined by

w : (x, y) 7→ wx(y) ≈ weight(y)
weight(x)

, called the Radon-Nikodym cocycle, satisfying:

(a) It is firstly a cocycle.

(b) For any Borel bijection γ : A → B, where A,B are subsets of X such that
graph(γ) ⊂ E, we have µ(B) = µ(γ∗A) =

∫
A
wx(γx) dµ(x).

(c) ”Tilted” mass transport holds: for each Borel function F : E → [0,∞],∫ ∑
y∈[x]E

F (x, y) dµ(x) =

∫ ∑
y∈[x]E

F (y, x) · wx(y) dµ(x).

Consequence: If T is a probability measure preserving map if and only if wx(T
−1(x)) =

1 for a.e. x ∈ X.

2.6 Ratio Set, Type and Stable Type of Nonsingular Actions

Let Γ be a countable group and (X,µ) be a standard probability space. A nonsingular
action of Γ acting on (X,µ) means µ(E) = 0 implies that µ(γE) = 0 for all γ ∈ Γ and
E a measurable subset of X.

Definition: The ratio set of an action (denoted by RS(Γ ↷ (X,µ)) ⊆ [0,∞]) is the set
of r ∈ [0,∞] if and only if for every A ⊆ X such that µ(A) > 0 and ∀ϵ > 0, ∃A′ ⊆ A
with µ(A′) > 0, and γ ∈ Γ \ {e} such that:

1. γ · A′ ⊆ A, and

2.
∣∣∣d(µ◦γ)(b)dµ

− r
∣∣∣ < ϵ ∀b ∈ A′.
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Equivalent Definition of the Ratio Set of a Group Action: Suppose Γ is a
countable group, and let (X,µ) be a standard probability space. Γ acts on X by
p.m.p. transformations (i.e., for each γ ∈ Γ, Tγ : X → X satisfying the condition
that µ(T−1

γ (A)) = µ(A) ∀ measurable sets A ⊆ X). The ratio set of the action of Γ on
X is the set of all r > 0 such that ∃A ⊆ X where µ(A) > 0 and γn ∈ Γ such that

lim
n→∞

µ(Tγn(A) ∩ A)
µ(A)

= r

exists.

We define the stable ratio set of the group action Γ acting on (X,µ) by the intersection
over all ratio sets of Γ acting on (X × Y, µ× ν).

Note: If for every ergodic action of Γ on (X,µ), the product action Γ ↷ (X × Y, µ× ν)
is ergodic, then the action Γ ↷ (X,µ) is weakly mixing.

A p.m.p. transformation T is called as mixing or strongly mixing, if for all E,F ⊆ X,

lim
n→∞

µ(E ∩ T−n(F )) = µ(E)µ(F ).

Proposition: The mixing condition implies ergodicity.

Proof: Let A be a T -invariant set (T−1(A) = A). Then, since by assumption T possesses
the mixing property, µ(A) = limn→∞ µ(A ∩ T−n(A)) = µ(A)µ(T−n(A)) = (µ(A))2. The
equation µ(A) = (µ(A))2 holds only if µ(A) = 0 or 1.

2.7 Boundry Action of a Free Group

Through the research project, the topics of free groups, their characteristics, and the
boundary action of the free group are discussed. The paper by Lewis Bowen and Amos
Nevo utilizes free group and boundary action in their proof of the ergodic theorem. Here
are basic some definitions and results on the boundary actions of the free group.

A free group F (S) is a group generated by the set S. F (S) is called a free group be-
cause the only relations are those that are absolutely necessary for the group axioms. Let
F (S) = ⟨a1, . . . , ar⟩ and let S = {a±1

i : 1 ≤ i ≤ r} be a set of free generators. Assume
the words are all reduced (i.e., if g ∈ F (S), then g = s1 . . . sn where si ̸= s−1

i+1). The
boundary of F , denoted ∂F , is defined as the set of sequences ζ = (s1, s2, s3, . . . ) ∈ SN.

In the case of F2, ∂F2 is a closed subset of {a, b, a−1, b−1}N = 4N, thus it is a compact
Polish set.
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Figure 1: Cayley graph for the free group on 2 generators

We are now ready to define the action of F on ∂F . In the case of F2, F2 acts on ∂F2

continuously by concatenation and cancellation. For x ∈ ∂F2, the action is defined as
follows:

ax =

{
ax if x ̸= (a−1)y,

y if x = (a−1)y.

In the general case, the action of F on ∂F is defined as

(a1 . . . an)ζ = (a1, . . . , an−j, sj+1, sj+2, . . . )

where a1, . . . , an ∈ S and j is the largest number such that s−1
i = an+1−i for all i ≤ j ≤ n.

We will demonstrate that a free group like F2 cannot admit any invariant Borel prob-
ability measure (i.e., µ(gA) = µ(A) for all g ∈ G and all measurable sets A).

Proof: Suppose that µ is an invariant Borel probability measure on ∂F2. Then ∂F2 =
Sa ⊔ Sb ⊔ Sa−1 ⊔ Sb−1 , where ⊔ denotes disjoint union. One of the sets Sa, Sb, Sa−1 , or
Sb−1 must have positive measure. Without loss of generality, assume that Sa has positive
measure. Then by the definition of µ being an invariant measure, µ(bnSa) = µ(Sa) for all
n. Therefore,

µ

(⊔
n∈N

bnSa

)
=
∑
n∈N

µ(Sa) = µ(Sa) · ∞ = ∞,

which yields a contradiction. Thus, we have shown that there does not exist an invariant
Borel probability measure on ∂F2.

While an invariant Borel probability measure does not exist, there are many quasi-
invariant probability measures that do exist. Consider the uniform measure on ∂F2

defined by µ([w]) = 1
4

(
1
3

)|w|−1
, where [w] denotes the sequence that begins with w and

|w| denotes the length of w (a finite word). In the paper by Lewis Bowen and Amos Nevo,
they define a probability measure ν on ∂F as follows: for every finite sequence a1, . . . , an
with ai+1 ̸= a−1

i for all 1 ≤ i < n,

ν({(s1, s2, . . . ) ∈ ∂F | si = ai for 1 ≤ i ≤ n}) = |Sn|−1 =
1

(2n)(2r − 1)n−1
.
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2.8 Paper by Lewis Bowen and Amos Nevo in 2015

One of the focuses of the research project was understanding the famous theorem proven
by Buffetov but using the methods introduced in Lewis Bowen and Amos Nevo’s 2015
paper.

Theorem: Let F acts on (X,B, µ) be a probability measure-preserving action. Then for
all f ∈ L logL(X,µ),

1

|S2n|
∑
g∈F 2

|g|=2n

f ◦ g a.e.−−→ E[f | F2]

almost everywhere on the σ-algebra of F2-invariant measurable subsets, as n→ ∞.

The proof of the theorem by Lewis Bowen and Amos Nevo uses various different topics
such as Radon-Nikodym cocycle, ratio sets (and stable types), Maharam extension, and
Theorem 3.1.

We will first state an important theorem on the construction of ergodic averages obtained
from the paper. In the paper, this theorem is denoted as theorem 3.1.

Suppose (B, ν,R) is a measured equivalence relation.[1] Let Ω = {ωi}i∈I be a measurable
family of leafwise probability measures ωi : R → [0, 1], and α : R → Γ be a measur-
able cocycle with Γ a countable group. Suppose there exists a nonsingular [2] compact
group action K ↷ (B, ν) with uniformly bounded Radon-Nikodym derivatives [3] and
ψ ∈ Lq(B, ν) with q ∈ (1,∞) and ψ is a probability density [4]

For i ∈ I, the probability measure ζi on the group Γ is defined as

ζi(γ) =

∫
B

∫
K

∑
c:α(c,kb)=γ

ωi(c, kb)ψ(b) dk dν(b).

[1]: R is an equivalence relation on B such that R is a measurable subset of B×B un-
der the product σ-algebra. It is often assumed that R is a countable equivalence relation,
which means its equivalence classes are countable, and that the measure ν is compatible
with the equivalence relation.

[2]: Equivalently, for any measurable set W ⊂ B, ν(W ) = 0 if and only if ν(kW ) = 0
for all k ∈ K.

[3]: Uniformly bounded RN-derivative means if {νγ}γ∈Γ is a family of measures on the

measure space B, then there exists a constant C > 0 such that dνγ(b)

dν
≤ C for all b ∈ B

and γ ∈ Γ.

[4]: Intuitively, one may think of this as weights.

Set p = q
q−1

, then we have the following results:

1. If Ω satisfies the strong Lp maximal inequality, then {ζi}i∈I also satisfies the strong
Lp maximal inequality.
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Note: We say that a family of probability measures {mi}i∈I defined on a countable
group (such as Γ) satisfies the strong Lp maximal inequality if there exists a constant
Dp > 0 depending only on {mi}i∈I such that∥∥∥∥∥supi∈I

∑
γ∈Γ

mi(γ)|f | ◦ γ−1

∥∥∥∥∥
p

≤ Dp∥f∥p for all f ∈ Lp(X,µ).

2. If Ω is a pointwise ergodic family in Lp, then {ζi}i∈I is a pointwise convergent family
in Lp.

Note: {mi}i∈I , defined on some group Γ, being a pointwise ergodic family in Lp

means that for every p.m.p action Γ ↷ (X,µ) and for all f ∈ Lp(X,µ), the functions∑
γ∈Γmi(γ)f ◦ γ−1 converge pointwise a.e. as i → ∞, and the a.e. pointwise limit

is equal to the conditional expectation of f on the σ-algebra of Γ-invariant Borel
sets.

3. If α is weakly mixing relative to the K-action, then {ζi}i∈I is a pointwise ergodic
family in Lp.

4. If Ω satisfies the (1, 1)-type maximal inequality and ψ ∈ L∞(B, ν), then {ζi}i∈I
satisfies the L log(L) maximal inequality.

Note:

(a) Let {mi}i∈I be a family of probability measures defined on some group Γ.
{mi}i∈I satisfy the weak (1, 1)-type maximal inequality if there exists C(1,1) > 0
depending only on {mi}i∈I such that

µ

({
x ∈ X : sup

i∈I

∑
γ∈Γ

mi(γ)f ◦ γ−1(x) ≥ t

})
≤
C(1,1)∥f∥1

t

for every f ∈ L1(X,µ) and t > 0.

(b) A family of probability measures {mi}i∈I satisfies the L log(L) maximal in-
equality if there exists a constant C1 > 0 depending only on {mi}i∈I such
that ∥∥∥∥∥supi∈I

∑
γ∈Γ

mi(γ)f ◦ γ−1

∥∥∥∥∥
1

≤ C1∥f∥L log(L)

for all f ∈ L log(L)(X,µ). Here,

∥f∥L log(L) =

∫
X

|f | log+(|f |) dµ.

5. If Ω is a pointwise ergodic family in L1, then {ζi}i∈I is a pointwise convergent family
in L log(L).

6. If α is weakly mixing relative to the K-action, then {ζi}i∈I is a pointwise ergodic
family in L log(L).
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Clearly, this theorem is of great importance and we will omit the full proof for now.
However, we shall see how this theorem is used to their proof. Before we discuss how
Lewis Bowen and Amos Nevo proved the ergodic theorem for f ∈ L logL, there are a few
more definitions and theorems that deserve to be presented here.

Previously, we defined weakly mixing for a transformation T . Now we want to define
weakly mixing of a cocycle. A measurable cocycle α : R → Γ, where R is a discrete
measurable equivalence relation (R ⊆ B×B where (B, ν) is a standard probability space)
and Γ is a countable group, is said to be weakly mixing if for every ergodic p.m.p. action
T ↷β (X,µ), the induced equivalence relation Rβα on B ×X is ergodic.

Generalization of weakly-mixing property of cocyle: Let K be a compact group
with a nonsingular measurable action K ↷ (B, ν). The measurable cocycle α : R → Γ
is said to be weakly mixing relative to the action K ↷ (B, ν) if for every p.m.p. action
Γ ↷β (X,µ) and every f ∈ L1(X) ⊆ L1(B ×X),∫

E[f | Rβα](kb, x) dk = E[f | Γ](x) for a.e. (b, x).

Here, dk represents the Haar probability measure on the compact group K. The expecta-
tion of f given Rβα is the conditional expectation of f , which is an element of L1(B×X),
on the σ-algebra Rβα, corresponding to Rβα-saturated measurable sets. The expectation
of f given Γ is the conditional expectation of f on the σ-algebra of Γ-invariant sets.

Note: A set A ⊆ B ×X is Rβα-saturated if for all (b1, x1) ∈ A and (b2, x2) ∈ B ×X, if
(b1, x1) is Rβα-equivalent to (b2, x2), then (b2, x2) belongs to A.

We shall define a few important equalities.

1. ∑
γ∈Γ

ζi(γ)f ◦ γ−1(x) =
∑
γ∈Γ

f ◦ γ−1(x)

∫
B

∫
K

∑
c:α(c,kb)=γ

ωi(c, kb)ψ(b) dk dν(b)

=

∫
B

∫
K

∑
c:α(c,kb)∈R

ωi(c, kb)f(c, α(kb)
−1x)ψ(b) dk dν(b)

=

∫
B

∫
K

A[f | ωi](kb, x)ψ(b) dk dν(b).

2.

Π(mi)(F )(x) =

∫
B

∫
K

A[F | ωi](kb, x)ψ(b) dk dν(b) for F ∈ Lp(B ×X).

We now want to present a theorem following the construction of ergodic averages.

Theorem 3.2:

(i.) If Ω (defined as above) satisfies the strong Lp maximal inequality and 1
p
+ 1

q
= 1,

then there exists a positive constant Zp such that∥∥∥∥sup
i∈I

Π(mi)(|F |)
∥∥∥∥
p

≤ Zp∥F∥p for all F ∈ Lp(B ×X).
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(ii.) If Ω satisfies the L log(L) maximal inequality and ψ ∈ L∞(B, ν), then there exists
a positive constant Z1 such that∥∥∥∥sup

i∈I
Π(mi)(|F |)

∥∥∥∥
1

≤ Z1∥F∥L log(L) for all F ∈ L log(L)(B ×X).

Proof:
WLOG, we can assume F ≥ 0. Consider p > 1 first. Since Ω satisfies the strong Lp

maximal inequality, by definition,∥∥∥∥∥supi∈I

∑
γ∈Γ

mi(γ)|F | ◦ γ−1

∥∥∥∥∥
p

≤ Cp∥F∥p,

where Cp is some positive constant. This holds for every F ∈ Lp(B × X). By Hölder’s
inequalities,∥∥∥∥sup

i∈I
Π(ζi)(|F |)

∥∥∥∥p
p

=

∫
X

∣∣∣∣sup
i∈I

∫
B

∫
K

A[F | ωi](kb, x)ψ(b) dk dν(b)

∣∣∣∣p dµ(x)
≤
∫
X

sup
i∈I

(∫
B

∫
K

A[F | ωi](kb, x)
p dk dν(b)

)
·
(∫

B

∫
K

ψ(b)q dk dν(b)

)p/q

dµ(x)

= ∥ψ∥pp
∫
X

sup
i∈I

∫
B

∫
K

A[F | ωi](kb, x)
p dk dν(b)dµ(x)

≤ ∥ψ∥pp
∫
X

∫
B

∫
K

sup
i∈I

Π(ζi)(|F |)(kb, x)p dk dν(b)dµ(x)

= ∥ψ∥qp
∫
X

∫
B

∫
K

sup
i∈I

Π(ζi)(|F |)(b, x)p
dν ◦ k−1

dν
(b) dk dν(b)dµ(x)

≤ C(K)∥ψ∥qp
∫
X

∫
B

∫
K

sup
i∈I

Π(ζi)(|F |)(b, x)p dν(b)dµ(x)

= C(K)∥ψ∥qp
∥∥∥∥sup

i∈I
Π(ζi)(|F |)

∥∥∥∥p
p

≤ C(K)∥ψ∥qpCp∥F∥pp = Zp∥F∥pp,

The proof of the L log(L) case is omitted. We will present one more theorem and another
corollory.

Theorem: For a countable group Γ (such that |Γ| = ∞), there exists a weakly mixing
cocycle α : R → Γ, where R is an amenable, discrete, ergodic p.m.p. equivalence relation,
and R ⊆ B ×B.

Proof: To prove the theorem, we select a probability measure κ ∈ Prob(Γ) such that the
support of κ [1] generates the group Γ. Consider the product space ΓZ with the product
topology, and let it be equipped with the measure κZ. Define a shift action T on ΓZ by
T (x)(n) = x(n+1) where x ∈ ΓZ and n ∈ Z. Let R be the equivalence relation on ΓZ by
considering pairs (x, T n(x)). Thus, we can formally define

R = {(x, T n(x)) : x ∈ ΓZ, n ∈ Z},
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and the equivalence relation R is determined by the orbits of T , which is isomorphic to
Z. Thus, we may reasonably conclude that R is the orbit equivalence relation of the shift
transformation. Dye’s theorem [2] guarantees that R is a hyperfinite II1

[3] equivalence
relation. Since hyperfinite equivalence relations are amenable, R is amenable.

Now, we define the cocycle α : R → Γ as the following:

α(x, T n(x)) =


x(1)x(2) . . . x(n) if n > 0,

e if n = 0,

x(0)−1x(−1)−1 . . . x(n+ 1)−1 if n < 0,

where e is the identity in Γ. This α that we just defined is a well-defined and measurable
cocycle on an invariant co-null measurable set.

To finalize the proof, we need to show that α is a weakly mixing cocycle. I am not
entirely certain of the methods used by Lewis Bowen and Amos Nevo to show that this
cocycle is weakly mixing.

[1:]
supp(κ) = {γ ∈ Γ | κ(U) > 0 for every open U containing γ}

[2:]

1. A CBER (Countable Borel Equivalence Relation) R on X is called hyperfinite if
there is an increasing exhaustive sequence {Rn}n∈N of finite Borel subequivalence
relations of R.

2. Dye’s theorem states that if R is the union of an increasing sequence of hyperfinite
Borel equivalence relations and µ ∈ P(X), then R is hyperfinite µ-a.e.

[3:] I believe that this is the von Neumann classification of algebras Type II factors.
However, I am not entirely sure about its definition and implication.

Corollory: Suppose κ is a probability measure on Γ whose support generates Γ. Let
ρn =

(∑n
k=1 κ

∗k) /n. Then {ρn}n∈N is a pointwise ergodic sequence in L log(L).

Note: κ(∗k) represents the k-fold convolution power of κ.

Now we are ready to discuss Lewis Bowen and Amos Nevo’s proof of Theorem 6.2, which
has been proven separately in a paper by Bufetov. However, the proof in Bufetov uses
different techniques.
The authors define a measure on the Borel σ-algebra of ∂F by

ν({(s1, s2, . . . ) ∈ ∂F | si = ai for 1 ≤ i ≤ n}) = |Sn|−1 =
1

(2n)(2r − 1)n−1
.

They show that the Radon-Nikodym derivative satisfies

d(ν ◦ g)(ζ)
dν

=
1

(2r − 1)n−2k
.
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The ratio set of the action of the free group F on (∂F, ν) is categorized as IIIλ with
λ = 1

2r−1
. According to the Geometric Covering Argument and Ergodic Theorem for

Free Groups, the stable type of F ↷ (∂F, ν) is IIIλ2 .

Then the author uses the Maharam extension to obtain an equivalence relation on
∂F ×{0, 1} and a cocycle. Let F act on ∂F ×Z defined by (gb, t+Rλ(gb)), which defines
a Maharam extension. For simplicity, the authors let R be the orbit equivalence relation
restricted to ∂F ×{0}, which we can naturally identify as ∂F . Thus, b is R-equivalent to

b′ if there exists g ∈ F such that gb = b′ and d(ν◦g)(b)
dν

= 1. This definition of R equivalence
is the same as the tail equivalence relation on ∂F (where ζ and η are two elements of ∂F
and they are equivalent if and only if there is a j such that ζn = ηn for all n ≥ j).

The paper then proceeds to define the cocycle α : R → F 2 by α(gb, b) = g for g ∈ F 2

and b ∈ ∂F . Since F 2 acts on (∂F, ν) with type and stable type III2λ, the defined cocycle
is weakly mixing for F 2. We then define ωn : R → [0, 1] to be a leafwise probability

measure given by ωn(gb, b) =
1

2r−2

(
1

(2r−1)n−1

)
if |g| = 2n, and 0 if |g| ≠ 2n. The measure

ωn(·, b) is uniformly distributed over the set of all elements of the form gb with |g| = 2n

and d(ν◦g)(b)
dν

= 1. Set ζn(γ) =
∫
∂F

∑
c:α(c,b)=γ ωn(c, b) dν(b). It was shown that {ωn}n∈N is

pointwise ergodic in L1 and satisfies the weak (1, 1)-type maximal inequality. Applying
Theorem 3.1 gives us that {ζn}n∈N is pointwise ergodic in L log(L) for F2-actions.

3 Conclusion

This research project has deepened my understanding of ergodic theory and greatly en-
riched my mathematical education. Reading the paper by Lewis Bowen and Amos Nevo
offered a valuable opportunity not only to explore the intricacies of their proof of the
Pointwise Ergodic Theorem but also to experience learning the rigorous process of math-
ematical research. The process of deciphering complex concepts, techniques, and method-
ologies presented in their work has provided me with a clearer insight into the challenges
and rewards associated with research in mathematics.
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